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OSCILLATIONS OF AN INHOMOGENEOUS ELASTIC LAYER

UDC 539.3A. O. Vatul’yan, M. A. Dvoskin, and P. S. Satunovskii

A method is proposed to analyze wave fields in an elastic layer with elastic properties varying ar-
bitrarily with depth. The method is based on reducing the boundary-value problem to a system of
Fredholm integral equations of the second kind, which is then analyzed numerically. Some features of
the structure of dispersion sets are analyzed and, in particular, their asymptotes are constructed.

Key words: elastic inhomogeneous layer, steady-state oscillations, wave dispersion.

Introduction. The problem of oscillations of inhomogeneous elastic waveguides has applications in various
areas: geophysics, the mechanics of laminated composites, nano- and biomechanics. The features of wave fields
in inhomogeneous layered structures were studied in [1–6]. In this case, the standard research procedure leads to
a system of first-order differential equations, whose coefficients depend not only on the distribution of the Lamé
coefficients on the cross-sectional coordinate but also on their derivatives [3, 4]. In this approach the important
cases of the piecewise continuous inhomogeneity behavior remain unstudied. Kalinchuk and Belyankova [5] proposed
a different approach based on numerical construction of linearly independent solutions of the system of linear
differential equations with variable coefficient, which extends the class of functions studied.

The present paper deals with wave fields in an elastic layer with elastic properties varying arbitrarily with
depth. The boundary-value problem reduces to a system of Fredholm integral equations of the second kind. Some
features of the structure of dispersion sets are studied, and, in particular, their asymptotes are constructed.

1. Formulation of Boundary-Value Problems. We consider a layer (|x1|, |x2| � ∞, 0 � x3 � h) of
nonuniform thickness with a rigidly fixed foundation (x3 = 0) which performs steady-state oscillations at a frequency
ω under a distributed load defined by the vector p = (p1, p2, p3) e−iωt. Plane and antiplane cases are studied. It is
assumed that the Lamé parameters λ = λ(x3), µ = µ(x3) and the density of the layer ρ(x3) are arbitrary piecewise
continuous functions. Problems of steady-state oscillations are considered. Below, the time coefficient e−iωt is
omitted.

Plane Deformation Problem. In the case of plane deformation, the components of the displacement vector u1

and u3 depend only on the coordinates x1 and x3 [u1 = u1(x1, x3) and u3 = u3(x1, x3)] and u2 = 0. The equations
of motion are written as

σ11,1 + σ13,3 + ρ(x3)ω2u1 = 0, σ31,1 + σ33,3 + ρ(x3)ω2u3 = 0. (1.1)

The Hooke’s law is written as

σ11 = λ(x3)(u1,1 + u3,3) + 2µ(x3)u1,1, σ33 = λ(x3)(u1,1 + u3,3) + 2µ(x3)u3,3,

σ13 = µ(x3)(u1,3 + u3,1).
(1.2)

The boundary conditions correspond to rigid clamping of the lower boundary of the layer

u1|x3=0 = 0, u3|x3=0 = 0 (1.3)

and loading on the upper boundary
σ13|x3=h = p1(x1), σ33|x3=h = p3(x1). (1.4)
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Antiplane Deformation Problem. Among the displacement vector components, only the component u2

= u2(x1, x3) is different from zero, and the equation of motion has the form

σ12,1 + σ23,3 + ρ(x3)ω2u2 = 0, (1.5)

where

σ12 = µ(x3)u2,1, σ23 = µ(x3)u2,3. (1.6)

The boundary conditions correspond to rigid clamping of the lower boundary of the layer and loading on the upper
boundary:

u2|x3=0 = 0; (1.7)

σ23|x3=h = p2(x1).

It should be noted that the formulated boundary-value problems lead to partial equations with variable
coefficients.

2. Reducing the Boundary-Value Problems to Fredholm Integral Equations of the Second
Kind. In the case of plane deformation, the boundary-value problem (1.1)–(1.4) is reduced to a system of first-
order differential equations. This is done using the Fourier transform on the variable x1:

ũ1(α, x3) =

∞∫

−∞
u1(x1, x3) eiαx1 dx1, ũ3(α, x3) =

∞∫

−∞
u3(x1, x3) eiαx1 dx1,

p̃1(α) =

∞∫

−∞
p1(x1) eiαx1 dx1, p̃3(α) =

∞∫

−∞
p3(x1) eiαx1 dx1.

The result is the canonical system of first-order ordinary differential equations for the transforms:

dũ1

dx3
= αũ3 +

1
µ

σ̃13,
dũ3

dx3
=

iαλ

λ + 2µ
ũ1 +

1
λ + 2µ

σ̃33,

dσ̃13

dx3
=

(4α2µ(λ + µ)
λ + 2µ

− ρω2
)
ũ1 +

iαλ

λ + 2µ
σ̃33,

dσ̃33

dx3
= −ρω2ũ3 + iασ̃31.

(2.1)

The parameters are rendered dimensionless by introducing the following notation:

z =
x3

h
(x3 ∈ [0, h] �→ z ∈ [0, 1]), µ̂(z) =

µ(hz)
µ0

, λ̂(z) =
λ(hz)

µ0
, p̂1 =

p̃1

µ0
, p̂3 =

p̃3

µ0
,

W13(z) =
σ̃13(hz)

µ0
, W33(z) =

σ̃33(hz)
µ0

, V1(z) =
ũ1(hz)

h
, V3(z) =

ũ3(hz)
h

,

ρ̂(z) =
ρ(hz)

ρ0
, β = αh, κ

2 =
ρ0ω

2h2

µ0
.

Here ρ0 and µ0 are the characteristic density and shear modulus. Then, system (2.1) becomes

V ′
1 = iβV3 +

1
µ̂

W13, V ′
3 =

iβλ̂

λ̂ + 2µ̂
V1 +

1

λ̂ + 2µ̂
W33,

W ′
13 =

(4β2µ̂(λ̂ + µ̂)

λ̂ + 2µ̂
− κ

2ρ̂
)
V1 +

iβλ̂

λ̂ + 2µ̂
W33, W ′

33 = −κ
2ρ̂V3 + iβW31,

(2.2)

and boundary conditions (1.3) and (1.4) become

V1|z=0 = 0, V3|z=0 = 0,

W13|z=1 = p̂1(α), W33|z=1 = p̂3(α).
(2.3)
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Integrating the system of differential equations (2.2) on the segment [0, z] and finding the integration con-
stants from boundary conditions (2.3), we obtain

V1 =

z∫

0

(
iβV3 +

1
µ̂

W13

)
dξ, V3 =

z∫

0

( iβλ̂

λ̂ + 2µ̂
V1 +

1
λ̂ + 2µ̂

W33

)
dξ,

W13 = −
1∫

z

[(4β2µ̂(λ̂ + µ̂)

λ̂ + 2µ̂
− κ

2ρ̂
)
V1 +

iβλ̂

λ̂ + 2µ̂
W33

]
dξ + p̂1,

W33 =

1∫

z

(
κ

2ρ̂V3 − iβW31

)
dξ + p̂3.

Eliminating V3 and W13 from this system, changing the order of integration in the double integrals, and introducing
the notation U = V1 and T = iW33, we obtain the following system of Fredholm integral equations of the second
kind:

U(z) =

1∫

0

M1(z, ξ)U(ξ) dξ +

1∫

0

M2(z, ξ)T (ξ) dξ + p̂1

z∫

0

1
µ̂(ξ)

dξ,

−T (z) =

1∫

0

M3(z, ξ)T (ξ) dξ +

1∫

0

M4(z, ξ)U(ξ) dξ − ip̂3 − βp̂1(1 − z).
(2.4)

The kernels of the integral operators can be written as

M1(z, ξ) = − β2λ̂

λ̂ + 2µ̂
K1(z, ξ) −

(4β2µ̂(λ̂ + µ̂)

λ̂ + 2µ̂
− κ

2ρ̂
)
K2(z, ξ),

M2(z, ξ) =
β

λ̂ + 2µ̂
K1(z, ξ) − βλ̂

λ̂ + 2µ̂
K2(z, ξ),

M3(z, ξ) = − κ
2ρ̂

λ̂ + 2µ̂
K3(z, ξ) +

β2λ̂

λ̂ + 2µ̂
K4(z, ξ),

M4(z, ξ) = β
[

κ
2ρ̂λ̂

λ̂ + 2µ̂
K3(z, ξ) +

(4β2µ̂(λ̂ + µ̂)

λ̂ + 2µ̂
− κ

2ρ̂
)
K4(z, ξ)

]
,

K1(z, ξ) = (z − ξ)θ(z − ξ), K2(z, ξ) =

min {z;ξ}∫

0

1
µ̂(τ)

dτ,

K3(z, ξ) = min {1 − z; 1 − ξ}, K4(z, ξ) = K1(ξ, z),

θ(x) =
{

1, x > 0,

0, x � 0.

Similarly, the boundary-value problem of antiplane deformation (1.5)–(1.7) is reduced to the system of
first-order differential equations

W ′(z) = −F (z)V (z), V ′(z) = W (z)/µ̂(z) (2.5)

with the boundary conditions

V |z=0 = 0, W |z=1 = p̂2(α), (2.6)

where
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p̂2 =
p̃2

µ0
, W (z) =

σ̃23(z)
µ0

, V (z) =
ũ2(z)

h
, F (z) = κ

2ρ̂(z) − β2µ̂(z).

Similarly to the plane deformation problem, problem (2.5), (2.6) is reduced to the Fredholm integral equation
of the second kind:

V (z) =

1∫

0

K(z, ξ)V (ξ) dξ + f(z), (2.7)

where

K(z, ξ) = F (ξ)

min {z;ξ}∫

0

dτ

µ̂(τ)
, f(z) = p̂2

z∫

0

dξ

µ̂(ξ)
.

It should be noted that the constructed integral equations can be solved numerically if the corresponding
inhomogeneity behavior is specified. For some combinations of parameters, the corresponding equations can be
unsolvable, which characterizes the points of dispersion sets [1].

To construct dispersion sets, it is necessary to analyze the Fredholm homogeneous integral equations of the
second kind (2.4) and (2.7) and to find combinations of the parameters κ and β for which the corresponding integral
equations have nontrivial solutions [3].

3. Numerical Analysis of Fields and Dispersion Sets. In this study, the Fredholm integral equation
of the second kind is discretized by dividing the segment [0, 1] into n − 1 segments by the points z1 = 0 < z2

< . . . < zn = 1, ∆zi = zi+1 − zi. On each of these segments, the unknown function V (z) is approximated by the
linear function Ṽ (z):

Ṽ (z) = Vi+1
z − zi

∆zi
− Vi

z − zi+1

∆zi
at z ∈ [zi, zi+1], i = 1, . . . , n − 1.

Then, satisfying the integral equation (2.7) at the points zi, we obtain the following linear algebraic system for the
nodal unknowns Vi = V (zi):

Vi +
n∑

j=1

CjiVj = f(zi), i = 1, . . . , n,

C1i =

z2∫

z1

K(zi, ξ)
ξ − z2

∆z1
dξ, Cni = −

zn∫

zn−1

K(zi, ξ)
ξ − zn−1

∆zn−1
dξ, i = 1, . . . , n,

Cji =

zj+1∫

zj

K(zi, ξ)
ξ − zj+1

∆zj
dξ −

zj∫

zj−1

K(zi, ξ)
ξ − zj−1

∆zj−1
dξ, j = 2, . . . , n − 1.

According to the adopted discretization procedure, the problems considered are reduced to systems of linear
equations, which are unsolvable for some combinations of the parameters κ and β. The set of such points (κ, β)
form the dispersion set in the primal problems. To find the points of a dispersion set, it is necessary to find
combinations of the parameters κ and β such that the corresponding homogeneous system of linear equations has a
nontrivial solution. Some general regularities in the structure of these sets are given in [1, 2]. The real component
of a dispersion set consists of a finite number of smooth curves originating at some points on the β = 0 axis that
are defined as the eigenvalues of the following independent spectral problems:

(µ̂V ′
1)′ + κ

2ρ̂V1 = 0, V1(0) = V ′
1(0) = 0,

W ′
33 +

κ
2ρ̂

λ̂ + 2µ̂
W33 = 0, W33(1) = W ′

33(0) = 0.

These problems result in the eigenvalues κ
2
k (k = 1, 2, . . . , N) of positive self-conjugate operators that in the case

of a homogeneous medium correspond to the barrier frequencies of transverse and longitudinal waves and generate
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Fig. 1 Fig. 2

Fig. 1. Branches of the dispersion set of the plane deformation problem: (a) first branch; (b) second

branch; (c) third branch; 1) λ̂ = 1, µ̂ = 1, and ρ̂ = 1; 2) λ̂ = z + 1/2, µ̂ = z + 1/2, and ρ̂ = 1;

3) λ̂ = 3/2 − z, µ̂ = 3/2 − z, and ρ̂ = 1.

Fig. 2. Branches of the dispersion set for the antiplane deformation problem: curve 4 refers to ρ̂ = 1
and µ̂ = 1 if z ∈ [0, 2/3] or 10 if z ∈ (2/3, 1]; the remaining notation same as in Fig. 1.

the corresponding branches of the dispersion set. In this case, there exists the critical wavenumber κ∗ such that in
the region κ < κ∗ there are no points of the dispersion set [2].

Dispersion sets for the different inhomogeneity behaviors are constructed numerically for n = 40. Figure 1
gives the first three branches of the dispersion set for the plane deformation problem for some parameters of the
medium. The inhomogeneity behavior is specified so that the integrals of all examined functions are equal to unity.
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It should be noted that abnormal dispersion is observed on the third branch, and it is the most pronounced
for the third inhomogeneity behavior.

Results of similar calculations for the plane deformation problem are given in Fig. 2.
We also note that for µ = µ0 = const and ρ = ρ0 = const, the dispersion set can be constructed analytically

and is a set of hyperbolas:

κ
2 − β2 = π2(1/2 + n)2, n = 0, 1, 2, . . . , κ∗ = π/2.

4. Structure of the Dispersion Sets. We study some common regularities in the structure of the
dispersion sets.

We consider system (2.5) with homogeneous boundary conditions in the antiplane deformation problem.
Eliminating W (z) from this system, we write the following equation for V (z):

(µ̂(z)V ′(z))′ = −F (z)V (z), V ′(1) = 0.

Multiplying it by V (z), integrating on the segment [0, 1], and performing some transformations, we obtain the main
identity for the dispersion curves:

κ
2 = β2

1∫

0

µ̂(V 2 + V ′2) dz
/ 1∫

0

ρ̂V 2 dz. (4.1)

Using the notation µmax = max
z∈[0,1]

µ̂(z), µmin = min
z∈[0,1]

µ̂(z), ρmax = max
z∈[0,1]

ρ̂(z), and ρmin = min
z∈[0,1]

ρ̂(z), from

the main identity (4.1), we obtain the following estimate for the wavenumber:

β2µmin/ρmax + C− � κ
2 � β2µmax/ρmin + C+.

Here the quantities C− and C+ satisfy the inequalities

C− �
1∫

0

µ̂V ′2 dz
/ 1∫

0

ρ̂V 2 dz � C+.

The quantity C− is easy to estimate using the Cauchy–Bunyakovskii inequality

C− = 1
/

ρmax

1∫

0

( t∫

0

dξ

µ̂(ξ)

)
dt.

The asymptotics V (1) as |β| → ∞ is constructed as follows. System (2.5) is written as

W ′(z) = β2µ̂(z)V (z), W (z) = µ̂(z)V ′(z),

V (0) = 0, W (1) = p̂2.
(4.2)

The solution of system (4.2) is sought in the form V (z) = A eβS(z) (β > 0). Substituting this representation into the
starting equation and retaining terms of higher order in β, we obtain S(z) = ±z. Then, V (z) = A1 eβz +A2 e−βz.
Satisfying the boundary conditions, we have

V (1) =
p̂2 sinh β

βµ(1) cosh β
∼ p̂2

βµ(1)
.

Let us construct the asymptotics for the dispersion curves for |β| → ∞. Setting κ = tβ, we write system (2.5)
with homogeneous boundary conditions in the form

W ′(z) = β2(µ̂(z) − ρ̂(z)t2)V (z), W (z) = µ̂(z)V ′(z),

V (0) = 0, W (1) = 0.

Its solution is sought in the form V (z) = A eβS(z). Then,

S(z) = ±
z∫

0

√
1 − ρ̂(ξ)t2

µ̂(ξ)
dξ.
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Satisfying the boundary conditions, we obtain β cosh (βS(1))S′(1) = 0, whence t =
√

µ̂(1)/ρ̂(1). Thus, the asymp-
tote of the curves of the dispersion set is determined by the velocity of the transverse waves of an elastic medium
with characteristics on the upper boundary.

Numerical calculations for constructing the points of the dispersion set show that for β > 10, the calculation
results and the results of the asymptotic analysis differ by not more than 2% for all kinds of inhomogeneity.

Let us construct the asymptotics of the points of the dispersion sets for |β| → ∞ in the plane deformation
problem. Setting κ = tβ, we obtain a solution of system (2.2): V1 = A1 eβS(z) and V3 = A3 eβS(z). From the first
two equations (2.2), W13 and W33 are expressed as

W13 = µ̂[A1S
′(z) − iA3]β eβS(z), W33 = (λ̂ + 2µ̂)

(
A3S

′(z) − i
λ̂

λ̂ + 2µ̂
A1

)
β eβS(z) .

Retaining only the main terms of the asymptotic expansions in the last two equations (2.2), we formulate a system
for the constants A1 and A3. Setting the determinant of this system equal to zero, we have

S1 = ±
z∫

0

√
1 − ρ̂(ξ)t2

λ̂(ξ) + 2µ̂(ξ)
dξ, S2 = ±

z∫

0

√
1 − ρ̂(ξ)t2

µ̂(ξ)
dξ.

Satisfying the homogeneous boundary conditions on the boundaries of the layer, we obtain the corresponding
equation of the form

[1 − S′
2(0)S′

1(0)] eβ(S1(1)+S2(1)){4S′
1(1)S′

2(1) − [1 + S′2
2 (1)]} = 0.

It should be noted that the vanishing of the first term gives a physically meaningless value for t, and the
vanishing of the third term leads to the well-known Rayleigh equation [5] with elastic constants on the upper
boundary of the layer.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00734) and the
Foundation “Leading Scientific Schools of Russia” (Grant No. NSh.-5014.2006.1).
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